
findCPcli
Release 0.0.8-22-g9b70189

Alex Oarga

May 03, 2021

Contents

1 1. Introduction 1
1.1 1.1 Chokepoint reactions . 2

1.2 1.2. Dead-End Metabolites (DEM) . 2

1.3 1.3. Essential reactions . 2

1.4 1.4. Example . 2

2 2. Installation 3

3 3. Pseudocode 3

4 4. Compute chokepoints 4
4.1 4.1. Spreadsheet data . 5

5 5. Compute growth dependent chokepoints 5
5.1 5.1. Procedure pseudocode . 6

6 6. Remove Dead-End Metabolites 6

7 7. Refine model with FVA 6

8 8. Tool parameters 6

9 9. Low Level API 7

10 10. License 8

1 1. Introduction

findCPcli is a command line python-tool for the computation of chokepoint reactions in genome-
scale metabolic models. The main purpose of the tool is to compute chokepoints by taking into account
both the topology and the dynamic information of the network. In addition to the computation of
chokepoints, findCPcli can compute and remove dead-end metabolites, find essential reactions and
update the flux bounds of the reactions according to the results of Flux Variability Analysis.

findCPcli takes as input an SBML files of genome-scale models, and provides as output a spreadsheet
file with the results of the chokepoint computation.

1

1.1 1.1 Chokepoint reactions

Chokepoint reactions are those reactions that are either the unique consumer or the only producer of
a given metabolite. findCPcli makes use of the flux bounds of the model to determine consumer and
producer reactions, and in turn, to compute chokepoint reactions.

1.2 1.2. Dead-End Metabolites (DEM)

Dead-End Metabolites (DEM) are those metabolites that are not produced or consumed by any reac-
tion.

1.3 1.3. Essential reactions

A reaction is considered an essential reaction if its deletion, this is, restricting its flux to zero, causes
the objective (e.g. cellular growth) to be zero.

1.4 1.4. Example

Chokepoint reactions and dead-end metabolites example:

The computation of chokepoints can also be exploited programmatically via the Low Level API which
is based on COBRApy1.

For citation purposes please refer to:

Note: Oarga et al. Growth Dependent Computation of Chokepoints in Metabolic Networks.
International Conference on Computational Methods in Systems Biology. Springer, Cham, 2020. https:
//doi.org/10.1007/978-3-030-60327-4_6 .

1 https://github.com/opencobra/cobrapy

2

LowLevelAPI.html
https://github.com/opencobra/cobrapy
https://doi.org/10.1007/978-3-030-60327-4_6
https://doi.org/10.1007/978-3-030-60327-4_6

2 2. Installation

findCPcli can be installed with pip package manager:

$ pip install findCPcli

3 3. Pseudocode

The following section includes pseudocode of some of the main operations performed by findCPcli.

• Find chokepoints on a model

function find_chokepoints(model)
chokepoint_list = empty list
for reaction in model

if reaction upper flux bound not equal 0 and lower flux bound not equal 0
for reactant in reaction

if reaction is the only consumer of reactant
chokepoint_list = chokepoint_list + (reaction, reactant)

for product in reaction
if reaction is the only producer of product

chokepoint_list = chokepoint_list + (reaction, product)
return chokepoint_list

• Find dead-end metabolites on a model

function find_dead_end_metabolites(model)
dem_list = empty list
for metabolite in model

if length(metabolite.consumers) == 0 or length(metabolite.producers) == 0
dem_list = dem_list + metabolite

return dem_list

• Remove dead-end metabolites on a model

function remove_dead_end_metabolites(model)
while number of metabolites in model does not change:

find_dead_end_metabolites(model)
delete all dead-end metabolites in model
for reaction that produced or consumed dead-end metabolites:

if reaction produces or consumes 0 metabolites [and is not exchange nor␣
↪→demand]:

delete reaction on model
find_dead_end_metabolites(model)

return model

• Update model flux bounds with Flux Variability Analysis

function update_flux_bounds_with_fva(model, fraction_of_optmimum_growth)
max_fva, min_fva = flux_variability_analysis(model, fraction_of_optmimum_growth)
for reaction in model

reaction.upper_flux_bound = max_fva[reaction]
reaction.lower_flux_bound = min_fva[reaction]

return model

• Find essential reactions

3

function find_essential_reactions(model)
essential_reactions = empty list
for reaction in model

knock out reaction
if flux_balance_analysis on model is 0

essential_reactions = essential_reactions + reaction
undo knock out

return essential_reactions

4 4. Compute chokepoints

Given a genome-scale model in SBML format, findCPcli computes chokepoints, dead-end metabolites,
essential reactions, and essential genes, and saves the results in a spreadsheet. findCPcli can be run
as follows, where model.xml is the file with the SBML model and results.xls is the file where the
results will be saved.

$ findCPcli -i model.xml -o results.xls

The following figure shows the pipeline of the chokepoint computation process. For a given SBML
file, computations are performed on 4 models: i) model in the SBML file; ii) model without DEM; iii)
model refined with FVA, i.e. with flux bounds updated according to FVA; and iv) model refined with
FVA and without DEM.

4

4.1 4.1. Spreadsheet data

The previous command produces a spreadsheet file containing the following sheets:

• model_info: General model information.

• reactions: List of reactions of the model

• metabolites: List of metabolites of the model

• genes: List of genes of the model

• reactions_FVA: Upper and lower flux bound of each reaction obtained with Flux Variability
Analysis.

• metabolites_FVA: Upper and lower flux bound of each reaction obtained with Flux Variability
Analysis grouped by metabolite.

• reversible_reactions: List of reversible reactions of the model before and after FVA refine-
ment.

• chokepoints: Chokepoint reactions and the metabolite/s they produce/consume. Chokepoints
are computed in 4 different models:

1. Input model in the SBML file.

2. Model without DEM.

3. Model refined with FVA.

4. Model refined with FVA and without DEM.

• dead-end: Dead-end metabolites before and after FVA refinement.

• essential genes: List of essential genes of the model. Essential genes are computed in the 4

previously listed models.

• essential reactions: List of essential reactions of the model. Essential reactions are computed
in the 4 previously listed models.

• comparison: Comparison of chokepoint, essential reactions and essential gene reactions in the 4

previously listed models.

• summary: Comparison the size of the previous sets and their intersections.

5 5. Compute growth dependent chokepoints

findCPcli can be used to compute Growth Dependent Chokepoints2 as follows: a) the flux of the
objective function is set to a given fraction of its optimal value; b) FVA is run to compute lower and
upper flux bounds of the reactions; c) the flux bounds are used to identify reversible, non reversible
and dead reactions (i.e. reaction with lower and upper bound equal to 0); and d) this directionality of
reactions is used to determine consumer and producer reactions, and in turn, chokepoints. The tool
produces a spreadsheet showing how the size of the set of chokepoints varies with the fraction of the
optimal value set to the objective function.

$ findCPcli -i model.xml -cp results.xls

2 https://doi.org/10.1007/978-3-030-60327-4_6

5

https://doi.org/10.1007/978-3-030-60327-4_6

5.1 5.1. Procedure pseudocode

The pseudocode of this task is included below:

model = read_model()
initial_reversible_reactions = all reactions with upper flux bound > 0 and lower flux␣
↪→bound < 0
initial_dead_reactions = all reactions with both upper and lower flux bound␣
↪→equal to 0
initial_non_reversible_reactions = (model.reactions - reversible_reactions) - dead_
↪→reactions
initial_chokepoint_reactions = find_chokepoints(model)

for fraction in [0,0 ... 1,0]
model = read_model()
model = update_flux_bounds_with_fva(model, fraction)
reversible_reactions[fraction] = all reactions with upper flux bound > 0 and lower␣

↪→flux bound < 0
dead_reactions[fraction] = all reactions with both upper and lower flux␣

↪→bound equal to 0
non_non_reversible_reactions[fraction] = (model.reactions - reversible_reactions) -␣

↪→dead_reactions
chokepoint_reactions[fraction] = find_chokepoints(model)

6 6. Remove Dead-End Metabolites

The following command exports a new generated model without Dead-End Metabolites from an input
SBML model.

$ findCPcli -i model.xml -swD new_model.xml

7 7. Refine model with FVA

findCPcli can generate a new model in which the flux bounds of the reactions have been updated with
the values obtained in the computation of FVA . In this way the model can receive a different topology
and the number of chokepoints, essential reactions or dead reactions, among others, can vary.

$ findCPcli -i model.xml -sF new_model.xml

Alternatively a new model can be generated refined with FVA and with DEMs removed after.

$ findCPcli -i model.xml -swDF new_model.xml

8 8. Tool parameters

More information about the parameters of the tool can be obtained by executing findCPcli -h.

$ findCPcli [-h] [-v] [-l] -i <input file> [-o <output file>]
[-cp <output file>] [-swD <output file>] [-sF <output file>]
[-swDF <output file>]

(continues on next page)

6

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-v, --verbose Print feedback while running.
-l, --license View license info.
-i <input file> Input metabolic model. Allowed file formats: .xml .json

.yml
-o <output file> Output spreadsheet file with results. Allowed file

formats: .xls .xlsx .ods
-cp <output file> Output spreadsheet file with growth dependent

chokepoints. Allowed file formats: .xls .xlsx .ods
-swD <output file> Save output model without Dead End Metabolites. Allowed

file formats: .xml .json .yml
-sF <output file> Save output model with reactions bounds updated with

Flux Variability Analysis. Allowed file formats: .xml
.json .yml

-swDF <output file> Save output model with reactions bounds updated with
Flux Variability Analysis and without Dead End
Metabolites. Allowed file formats: .xml .json .yml

-objective <reaction id>
Reaction id to be used as objective function with Flux
Balance Analysis

9 9. Low Level API

The computation of chokepoints can also be exploited via findCPcore3 which is used by findCPcli.
findCPcore4 documentation can be found at readthedocs5.

Example of network refinement and chokepoint computation:

from findCPcore import CobraMetabolicModel

model = CobraMetabolicModel("aureus.xml")

update flux bounds with FVA
model.fva(update_flux=True)

compute chokepoints
model.find_chokepoints()

get chokepoints
model.chokepoints()

3 https://github.com/findCP/findCPcli/blob/master/LICENSE
4 https://github.com/findCP/findCPcli/blob/master/LICENSE
5 https://findcpcore.readthedocs.io/en/latest/

7

https://github.com/findCP/findCPcli/blob/master/LICENSE
https://github.com/findCP/findCPcli/blob/master/LICENSE
https://findcpcore.readthedocs.io/en/latest/

10 10. License

findCPcli is released under GPLv3
6.

For citation purposes please refer to:

Note: Oarga et al. Growth Dependent Computation of Chokepoints in Metabolic Networks.
International Conference on Computational Methods in Systems Biology. Springer, Cham, 2020. https:
//doi.org/10.1007/978-3-030-60327-4_6 .

6 https://github.com/findCP/findCPcli/blob/master/LICENSE

8

https://github.com/findCP/findCPcli/blob/master/LICENSE
https://doi.org/10.1007/978-3-030-60327-4_6
https://doi.org/10.1007/978-3-030-60327-4_6

	1. Introduction
	1.1 Chokepoint reactions
	1.2. Dead-End Metabolites (DEM)
	1.3. Essential reactions
	1.4. Example

	2. Installation
	3. Pseudocode
	4. Compute chokepoints
	4.1. Spreadsheet data

	5. Compute growth dependent chokepoints
	5.1. Procedure pseudocode

	6. Remove Dead-End Metabolites
	7. Refine model with FVA
	8. Tool parameters
	9. Low Level API
	10. License

